
Exercise 4

Using the fact that the modulus $|e^{i\theta} - 1|$ is the distance between the points $e^{i\theta}$ and 1 (see Sec. 4), give a geometric argument to find a value of θ in the interval $0 \le \theta < 2\pi$ that satisfies the equation $|e^{i\theta} - 1| = 2$.

Ans. π .

Solution

Use the law of cosines.

$$x^{2} = 1^{2} + 1^{2} - 2(1)(1)\cos\theta$$
$$= 2 - 2\cos\theta$$

Set x, the distance between $z = e^{i\theta}$ and z = 1, to 2 and solve for θ .

$$2^{2} = 2 - 2\cos\theta$$
$$2 = -2\cos\theta$$
$$\cos\theta = -1$$
$$\theta = \pi + 2\pi n, \quad n = 0, \pm 1, \pm 2, \dots$$

Since we require $0 \le \theta < 2\pi$, we choose n = 0. Therefore,

 $\theta = \pi.$